Return responses

Finally, we're ready to return the results of our query to the frontend. We already have a component called QueryResponses that's utilizing our useQuery hook. We'll trade out the TEST query that we imported earlier and replace it with our NEAR_TEXT_RESPONSE and LLM_QUERY queries. Additionally, we'll need access to our context. Inside the QueryResponses.tsx file, let's import the queries and the context along with the useEffect hook:

import { useEffect } from "react";
import { useQuery } from "@apollo/experimental-nextjs-app-support/ssr";
import { NEAR_TEXT_RESPONSE, LLM_QUERY } from "../utilities/queries";
import { useAppContext } from "../utilities/context";

Within the function, we'll also need this context; we'll need to destructure three pieces in this component:

const { query, responseType, setQueryLoading } = useAppContext();

We'll also create a series of interfaces that will help us to type the data that we're receiving from our queries:

interface Resume {
application_id: string;
content: string;
application_relationship: {
hiring_manager: string;
resume_url: string;
};
}
interface NearTextQueryResponse {
Resume: Resume[];
}
interface LLMQueryResponse {
QueryLLM: string;
}

Making the right query

Remember, our users can decide what type of response they want to receive. We'll need to conditionally choose a query based on the responseType value:

const { data, loading } = useQuery(responseType === "near_text" ? NEAR_TEXT_RESPONSE : LLM_QUERY, {
variables: {
user_query: query,
},
});

Rendering the response

In all, our file will look like what's below. As Apollo Client gives us access to the loading state, we can use that to render a loading indicator while the query is being made. Additionally, our vectorized resumes are quite long and we're choosing to render parts of them. We'll add a function that truncates the text and gives the user a preview. Finally, we're including a smooth-scroll effect so that the user can see the response as soon as it's returned.

import { useEffect } from "react";
import { useQuery } from "@apollo/experimental-nextjs-app-support/ssr";
import { NEAR_TEXT_RESPONSE, LLM_QUERY } from "../utilities/queries";
import { useAppContext } from "../utilities/context";
interface Resume {
application_id: string;
content: string;
application_relationship: {
hiring_manager: string;
resume_url: string;
};
}
interface NearTextQueryResponse {
Resume: Resume[];
}
interface LLMQueryResponse {
QueryLLM: string;
}
export default function QueryResponse(): JSX.Element {
const { query, responseType, setQueryLoading } = useAppContext();
console.log(query);
const { data, loading, error } = useQuery<NearTextQueryResponse | LLMQueryResponse>(
responseType === "near_text" ? NEAR_TEXT_RESPONSE : LLM_QUERY,
{
variables: {
user_query: query,
},
}
);
data && console.log(data);
function formatResumeString(string: string): string {
let newString = string.substring(0, 200);
newString = newString + "...";
return newString;
}
useEffect(() => {
const querySelector = document.querySelector("#responses");
if ((querySelector && data !== undefined) || error !== undefined) {
querySelector.scrollIntoView({ behavior: "smooth" });
setQueryLoading(false);
}
}, [data, error]);
if (loading) {
return <div>Loading...</div>;
}
if (error) {
setQueryLoading(false);
return <div>This question is too long for the OpenAI model. Try again with something shorter.</div>;
}
return (
<div className="flex flex-col w-3/4 h-full place-content-center mx-auto mb-32 gap-4">
{responseType === "full_text" && data && (
<div className="flex flex-col text-start min-h-32 p-12 gap-2">
<p>{data.QueryLLM}</p>
</div>
)}
{responseType === "near_text" &&
data &&
data.Resume.map((item: Resume, i: number) => {
return (
<div className="flex rounded-md shadow-lg min-h-32 p-12 gap-2" key={i}>
<div>
<p
className="grid place-items-center text-white text-sm rounded-full w-8 h-8 bg-indigo-500"
id={i.toString()}>
{i + 1}
</p>
</div>
<div className="flex flex-col items-start gap-2">
<p className="text-sm font-semibold">Candidate {item.application_id}</p>
<p className="text-xs font-normal">{item.application_relationship.hiring_manager}</p>
<a
className="text-sm font-normal text-indigo-500 transition-all ease-in-out hover:text-indigo-700"
href={item.application_relationship.resume_url}
rel="noopener noreferrer"
target="_blank">
Link to CV
</a>
<p className="text-start">{formatResumeString(item.content)}</p>
</div>
</div>
);
})}
</div>
);
}

Triggering the query

Of course, we need to actually tell the component to make the query. Back in our app/page.tsx component, we'll add a conditional that checks if the isSent state is true. If it is, we'll render the QueryResponse component. The whole file will look like this now:

"use client";
import Input from "./components/Input";
import QueryResponse from "./components/QueryResponse";
import { useAppContext } from "./utilities/context";
export default function Home() {
const { isSent } = useAppContext();
return (
<main className="p4">
<Input />
{isSent && (
<div className="flex flex-col col-span-2 mx-auto w-full text-center min-h-96" id="responses">
<h2 className="text-2xl font-bold">Results</h2>
<p className="text-sm mb-3 text-slate-500">Here are the results for your query.</p>
{isSent && <QueryResponse />}
</div>
)}
</main>
);
}

Note: Since we're using context inside this root page.tsx file, we'll need to let Next.js know it's not a sever component, thus we add use client to the top of the file.

Inside our /app/components/Input.tsx, we'll add a function that will handle the button click:

function handleAsk() {
setQueryLoading(true);
setIsSent(true);
}

We'll make some updates to our button so that it will conditionally render text based on whether or not the query is loading, and we'll disable it when it is:

<button
className={`bg-indigo-500 text-white rounded-lg px-8 py-4 mt-4 hover:bg-indigo-600 transition-all ease-in-out ${
queryLoading && "disabled:opacity-50 disabled:cursor-not-allowed"
}`}
disabled={queryLoading}
onClick={handleAsk}>
{queryLoading ? "Working on it..." : "Ask"}
</button>

And, finally, a useEffect which will set the isSent state to true whenever the query is loading and cause our new component to render:

useEffect(() => {
if (queryLoading) {
setIsSent(true);
}
}, [queryLoading]);
If you need to see the 'Input' code in its entirety, you can self-check using this 👇
"use client";
import { useAppContext } from "../utilities/context";
import { useState, useEffect } from "react";
export default function Input() {
const { setQuery, responseType, setResponseType, queryLoading, setQueryLoading, setIsSent } = useAppContext();
const [placeholderIndex, setPlaceholderIndex] = useState(0);
const [placeholders, setPlaceholders] = useState([
"Which candidates have the most management experience?",
"Which manager is available for an interview?",
"Which resumes mention payroll experience?",
"Who lists communication skills on their resume?",
]);
function changePlaceholder() {
setPlaceholderIndex((placeholderIndex + 1) % placeholders.length);
}
useEffect(() => {
const interval = setInterval(() => {
changePlaceholder();
}, 3000);
return () => clearInterval(interval);
}, [placeholderIndex]);
function handleToggle() {
setResponseType(responseType === "near_text" ? "full_text" : "near_text");
}
function handleChange(e) {
setQuery(e.target.value);
}
function handleAsk() {
setQueryLoading(true);
setIsSent(true);
}
return (
<div className="grid grid-cols-1 lg:grid-cols-5 h-screen p-4">
<div className="flex flex-col col-span-2 place-content-center mx-auto text-center md:text-left">
<h1 className="text-5xl font-bold mb-4">People Pleasers</h1>
<p className="text-xl text-slate-500">The most pleasing HR service 😘</p>
</div>
<div className="flex flex-col col-span-3 justify-center text-center md:text-left">
<h2 className="text-2xl font-bold">How can I help you?</h2>
<p className="text-sm mb-3 text-slate-500">
Ask me anything about the available candidates, their resumes, or the HR managers who are available to help
you with your hiring process.
</p>
<input
className="rounded-lg border w-full p-4 border-gray-300 focus:outline-none focus:ring-2 focus:ring-gray-200 focus:border-transparent"
type="text"
placeholder={placeholders[placeholderIndex]}
onChange={(e) => handleChange(e)}
/>
<div className="flex mt-4">
<input id="toggle" className="hidden" type="checkbox" onChange={() => handleToggle()} />
<label
className={`flex items-center cursor-pointer w-12 h-6 rounded-full p-1 transition-all ease-in-out duration-200 ${
responseType === "full_text" ? "bg-indigo-500" : "bg-gray-300"
}`}
htmlFor="toggle">
<div
className={`bg-white w-4 h-4 rounded-full shadow-md transform duration-200 ease-in-out ${
responseType === "full_text" ? "translate-x-6" : "translate-x-0"
}`}
/>
</label>
<span className={`ml-3`}>Talk to me like a human (resource)</span>
</div>
<button
className={`bg-indigo-500 text-white rounded-lg px-8 py-4 mt-4 hover:bg-indigo-600 transition-all ease-in-out ${
queryLoading && "disabled:opacity-50 disabled:cursor-not-allowed"
}`}
disabled={queryLoading}
onClick={handleAsk}>
{queryLoading ? "Working on it..." : "Ask"}
</button>
</div>
</div>
);
}

Run a query

At this point, we should be able to ask questions and get responses from our AI assistant in one of two ways: either as an array of resumes based on the near_text vector property, or as a natural language response from our LLM 🎉

Working query

Did you find this page helpful?
Start with GraphQL on Hasura for Free
  • ArrowBuild apps and APIs 10x faster
  • ArrowBuilt-in authorization and caching
  • Arrow8x more performant than hand-rolled APIs
Promo
footer illustration
Brand logo
© 2025 Hasura Inc. All rights reserved
Github
Titter
Discord
Facebook
Instagram
Youtube
Linkedin